Structural and Catalytic Characterization of a Fungal Baeyer-Villiger Monooxygenase
نویسندگان
چکیده
منابع مشابه
Structural and Catalytic Characterization of a Fungal Baeyer-Villiger Monooxygenase
Baeyer-Villiger monooxygenases (BVMOs) are biocatalysts that convert ketones to esters. Due to their high regio-, stereo- and enantioselectivity and ability to catalyse these reactions under mild conditions, they have gained interest as alternatives to chemical Baeyer-Villiger catalysts. Despite their widespread occurrence within the fungal kingdom, most of the currently characterized BVMOs are...
متن کاملCrystal structure of a Baeyer-Villiger monooxygenase.
Flavin-containing Baeyer-Villiger monooxygenases employ NADPH and molecular oxygen to catalyze the insertion of an oxygen atom into a carbon-carbon bond of a carbonylic substrate. These enzymes can potentially be exploited in a variety of biocatalytic applications given the wide use of Baeyer-Villiger reactions in synthetic organic chemistry. The catalytic activity of these enzymes involves the...
متن کاملA Carbonate-Forming Baeyer-Villiger Monooxygenase
Despite the remarkable versatility displayed by flavin-dependent monooxygenases (FMOs) in natural product biosynthesis, one notably missing activity is the oxidative generation of carbonate functional groups. We describe a multifunctional Baeyer-Villiger monooxygenase, CcsB, which catalyzes the formation of an in-line carbonate in the macrocyclic portion of cytochalasin E. This study expands th...
متن کاملIdentification of a Baeyer-Villiger monooxygenase sequence motif.
Baeyer-Villiger monooxygenases (BVMOs) form a distinct class of flavoproteins that catalyze the insertion of an oxygen atom in a C-C bond using dioxygen and NAD(P)H. Using newly characterized BVMO sequences, we have uncovered a BVMO-identifying sequence motif: FXGXXXHXXXW(P/D). Studies with site-directed mutants of 4-hydroxyacetophenone monooxygenase from Pseudomonas fluorescens ACB suggest tha...
متن کاملExploring the structural basis of substrate preferences in Baeyer-Villiger monooxygenases: insight from steroid monooxygenase.
Steroid monooxygenase (STMO) from Rhodococcus rhodochrous catalyzes the Baeyer-Villiger conversion of progesterone into progesterone acetate using FAD as prosthetic group and NADPH as reducing cofactor. The enzyme shares high sequence similarity with well characterized Baeyer-Villiger monooxygenases, including phenylacetone monooxygenase and cyclohexanone monooxygenase. The comparative biochemi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS ONE
سال: 2016
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0160186